【AI 英文奏折】01-10-2026 10:40

AI 英文奏折

2026.01.10 | 今日精选 22 篇

👤 (5) X 上的 Rohan Paul:“New ByteDance+Duke Univ paper shows that batching related questions lets an LLM answer more accurately while cutting costs up to 61%. Instead of 1 prompt at a time, this method lets an LLM learn from a whole batch. Batch-of-Thought is training-free, it groups similar queries, https://t.co/pfGV4LpMXb”
博主未设置简介 影响力: 0.0万粉丝
AI INSIGHT
字节跳动与杜克大学提出Batch-of-Thought方法,通过批量处理相似问题并交叉验证,在提升大模型回答准确率的同时降低61%成本

🕒 发布于【2026年01月09日 17时】 | ❤️ 8 | 📝 146 词

阅读原文

👤 (5) X 上的 Rohan Paul:“Stock ranking works better when each prediction includes how uncertain that prediction is. In their tests, a neural network portfolio’s Sharpe ratio rises to 1.86 from 1.48 after the change. The authors build a personal uncertainty band for each stock from recent out of sample https://t.co/jUaCTgW3Ty”
博主未设置简介 影响力: 0.0万粉丝
AI INSIGHT
引入个股不确定性调整排序法,可提升投资组合夏普比率该方法通过预测误差构建置信带,优化选股与做空策略,经实证验证有效

🕒 发布于【2026年01月09日 15时】 | ❤️ 8 | 📝 165 词

阅读原文

👤 (5) X 上的 Rohan Paul:“This paper shows a single LLM can pass Japan’s bar exam by checking and fixing its own answers. After extra training on past exams and a self verification step, the model scored 96 on the 2024 test where 93 is passing. The exam is hard because each question packs several legal https://t.co/HAiiJLrBfE”
博主未设置简介 影响力: 0.0万粉丝
AI INSIGHT
单LLM通过自我验证与纠错,以96分通过日本司法考试(合格线93分)研究显示,保持试题原格式并自我检查优于分解训练或多智能体方法

🕒 发布于【2026年01月09日 13时】 | ❤️ 11 | 📝 197 词

阅读原文

👤 (5) X 上的 Rohan Paul:“The paper shows LLM agents can handle messy financial investing tradeoffs without a human writing every solver by hand. Picking only a few investments that balance return and risk is hard, because the number of possible mixes explodes and exact math solvers get too slow. The https://t.co/ul5jXMbyvC”
博主未设置简介 影响力: 0.0万粉丝
AI INSIGHT
本文提出利用LLM代理自动生成投资组合优化求解器,通过迭代编写并测试代码,实现在风险与收益间高效寻优,减少人工编码需求,且效果接近或优于传统方法

🕒 发布于【2026年01月09日 12时】 | ❤️ 6 | 📝 195 词

阅读原文

👤 (5) X 上的 Rohan Paul:“Researchers built a Japanese multi turn stress test that shows medical LLMs get easier to trick in chats. Shows medical fine tuning can make an LLM less safe, and multi turn tests catch it. Most medical safety tests are English and single turn, but real patient chats unfold https://t.co/OKdg9dyh9z”
博主未设置简介 影响力: 0.0万粉丝
AI INSIGHT
日本医疗大模型多轮对话安全测试显示,经医学微调后模型更易被诱导违规,凸显多轮对抗测试必要性

🕒 发布于【2026年01月09日 10时】 | ❤️ 6 | 📝 201 词

阅读原文

👤 (5) X 上的 Aakash Gupta:“Founder of The Browser Company: “If you don’t work Claude Code-native ASAP your team’s going to get left behind.” The “Claude Code-native” thing sounds like a buzzword until you look at what’s actualy happening at top engineering orgs. Boris Cherny, who created Claude Code at https://t.co/wmhja2YnW0”
博主未设置简介 影响力: 0.0万粉丝
AI INSIGHT
Claude Code原生开发大幅提升工程团队效率,AI成为主要执行层,推动开发流程变革

🕒 发布于【2026年01月10日 04时】 | ❤️ 4 | 📝 429 词

阅读原文

👤 (5) X 上的 Rohan Paul:“Incredible. 👏 China’s MiniMax just officially listed on the Hong Kong Stock Exchange today. And the valuation surpassed HKD 100B (USD 12.8B), making them the only tech-sector Hong Kong IPO in the past 4 years to rise more than 100% on the first day of trading. This public https://t.co/SI50cD6lQA”
博主未设置简介 影响力: 0.0万粉丝
AI INSIGHT
MiniMax香港上市首日市值超千亿港元,获全球机构超额认购,募资用于AI研发

🕒 发布于【2026年01月10日 04时】 | ❤️ 3 | 📝 294 词

阅读原文

👤 (5) X 上的 Google AI:“In case you missed it, our latest Google AI: Release Notes episode is out! Google Search VPs Robby Stein and Rhiannon Bell join @OfficialLoganK to deep dive into the integration of Gemini 3 into Search. Chapters: – Intro – What is Generative UI? – From static to generative https://t.co/XuNh8apRt7”
博主未设置简介 影响力: 0.0万粉丝
AI INSIGHT
谷歌AI播客探讨Gemini 3集成至搜索,涵盖生成式UI、交互模拟与可视化数据等主题

🕒 发布于【2026年01月10日 04时】 | ❤️ 17 | 📝 92 词

阅读原文

👤 (5) X 上的 Sharyph:“If your lead magnet is a “Ultimate Guide to X” or “101 Tips for Y,” it’s probably converting at <1%. The reason is simple: You built it to solve your problem (proving you are an expert) instead of their problem (fixing a specific pain point). You don’t need to be “creative” to”
博主未设置简介 影响力: 0.0万粉丝
AI INSIGHT
“终极指南”类集客内容转化率低,因未直击用户痛点通过Reddit精准调研,聚焦具体需求并提供工具化解决方案,可实现高转化

🕒 发布于【2026年01月09日 20时】 | ❤️ 2 | 📝 334 词

阅读原文

👤 (5) X 上的 Alex Albert:“One of the bigger shifts for me with Claude Code over the past few months has been shutting down that initial dismissal I have when a task feels “not worth my time” Like I’ll think “it would be nice to rename all my screenshots with what’s actually in them” and immediately move”
博主未设置简介 影响力: 0.0万粉丝
AI INSIGHT
Claude Code助我快速实现琐碎编程想法,凸显自然语言指令的广阔应用潜力

🕒 发布于【2026年01月10日 03时】 | ❤️ 13 | 📝 103 词

阅读原文

👤 (5) X 上的 Matthew Prince 🌥:“Yesterday a quasi-judicial body in Italy fined @Cloudflare $17 million for failing to go along with their scheme to censor the Internet. The scheme, which even the EU has called concerning, required us within a mere 30 minutes of notification to fully censor from the Internet any https://t.co/qZf9UKEAY5”
博主未设置简介 影响力: 0.0万粉丝
AI INSIGHT
意大利因Cloudflare拒绝配合其互联网审查要求而罚款1700万美元,Cloudflare表示将上诉并考虑撤出在意大利的服务与投资

🕒 发布于【2026年01月09日 23时】 | ❤️ 8 | 📝 448 词

阅读原文

👤 (5) X 上的 Harsh Makadia:“A founder came to me with a $12k SaaS plan. Big vision Endless features Long timeline I pushed back. I proposed a $7k lean build that solved 90% of the real problem. What happened next? 1. Faster delivery 2. Less complexity 3. Actual users using it Most products don’t fail”
博主未设置简介 影响力: 0.0万粉丝
AI INSIGHT
创始人原计划投入1.2万美元开发复杂SaaS产品,我建议改为7千美元精简方案,实现核心需求结果交付更快、用户反馈积极产品失败常因过早追求功能全面,而非功能不足

🕒 发布于【2026年01月09日 21时】 | ❤️ 13 | 📝 70 词

阅读原文

👤 (5) X 上的 Rohan Paul:“New paper from China lab shows that combining math style prompts with code completion boosts jailbreak success across many LLMs. LLMs can refuse in normal chat, but the same request inside math and code formats often slips through. The problem is that most safety training is https://t.co/r4VwvzKGTm”
博主未设置简介 影响力: 0.0万粉丝
AI INSIGHT
中国研究提出EquaCode方法,通过数学公式与代码组合绕过LLM安全机制,显著提升越狱成功率

🕒 发布于【2026年01月09日 08时】 | ❤️ 12 | 📝 187 词

阅读原文

👤 (5) X 上的 Ksenia_TuringPost:“DeepSeek’s Manifold-Constrained Hyper-Connections (mHC) shook the AI community with a real mathematical wake-up call: We are running into architectural limits. For a decade, the “just add more layers” strategy on the residual connection: By forcing every layer to preserve https://t.co/pE6tdzHF9h”
博主未设置简介 影响力: 0.0万粉丝
AI INSIGHT
DeepSeek提出流形约束超连接,突破残差网络架构局限,实现深度稳定模型

🕒 发布于【2026年01月09日 06时】 | ❤️ 8 | 📝 139 词

阅读原文

👤 (5) X 上的 LlamaIndex 🦙:“A problem we see often: long documents with different pieces of repeating content. Example: a resume book with a cover page, a few pages about student curriculums, then back to back resumes Build an intelligent resume processing agent that automatically extracts structured data https://t.co/tPrzO5DeTo”
博主未设置简介 影响力: 0.0万粉丝
AI INSIGHT
基于LlamaSplit与LlamaExtract构建智能简历解析代理,实现重复内容的结构化提取与自动化处理

🕒 发布于【2026年01月10日 01时】 | ❤️ 6 | 📝 160 词

阅读原文

👤 (5) X 上的 Aakash Gupta:“Not everything needs to be agentic. This proves why. .@PawelHuryn built two versions of the same competitor monitoring system—one standard workflow, one agentic—and the results reveal the hidden cost of agency. The standard workflow: predefined steps, fixed prompts, everything https://t.co/kMrz4SFcQD”
博主未设置简介 影响力: 0.0万粉丝
AI INSIGHT
智能体方案耗时与成本显著高于标准流程,但效果相近

🕒 发布于【2026年01月10日 01时】 | ❤️ 1 | 📝 155 词

阅读原文

👤 (5) X 上的 @levelsio:“🧍 Very cool idea So I added it to Photo AI as a T-Pose photo pack you can use to create a moving (or dancing) 3d model of yourself It auto-generates the correct T-Pose of your model immediately and then converts it into a 3D model you can download (as .fbx) and instantly https://t.co/tcSZkefS93”
博主未设置简介 影响力: 0.0万粉丝
AI INSIGHT
将照片AI生成的T-Pose人像自动转换为3D模型,支持导入Mixamo绑定骨骼并添加动作

🕒 发布于【2026年01月09日 23时】 | ❤️ 9 | 📝 72 词

阅读原文

👤 (5) X 上的 Rohan Paul:“This paper tests faster ways to spot LLM hallucinations, showing a small classifier can match heavy checkers. They show a lightweight factuality scorer can spot many LLM hallucinations without running a second LLM. Older tools like KnowHalu try to catch this by breaking the https://t.co/8xfO4lhTwQ”
博主未设置简介 影响力: 0.0万粉丝
AI INSIGHT
本文提出轻量级分类器HHEM,可快速检测大模型幻觉,在问答任务中将评估时间从8小时降至10分钟,准确率达82.2%

🕒 发布于【2026年01月09日 09时】 | ❤️ 9 | 📝 188 词

阅读原文

👤 (5) X 上的 Rohan Paul:“Jensen Huang said Grok 5 will be 7 Trillion parameter model. On time to train, with the training window fixed at 1 month, the new Vera-Rubin GPU system of Nvidia needs 1/4 the number of systems compared with Blackwell to train the same frontier model. “factory throughput” https://t.co/dpkXxrDdQq”
博主未设置简介 影响力: 0.0万粉丝
AI INSIGHT
黄仁勋称Grok 5为7万亿参数模型,Rubin GPU系统训练效率较Blackwell提升4倍,工厂吞吐量每瓦特约为Hopper的100倍,对数据中心能效与收益至关重要

🕒 发布于【2026年01月09日 09时】 | ❤️ 19 | 📝 99 词

阅读原文

👤 (5) X 上的 Philipp Schmid:“Introducing mcp-cli, a open-source, lightweight CLI for dynamic discovering and interacting with MCP (Model Context Protocol) servers, designed for AI agents and shell scripting. – Reduces MCP token usage by 99% via dynamic discovery. – Compiles to a single standalone binary via https://t.co/TK8PDePBGh”
博主未设置简介 影响力: 0.0万粉丝
AI INSIGHT
mcp-cli 是一款轻量开源 CLI 工具,支持动态发现与交互 MCP 服务器,适用于 AI 智能体与脚本编程

🕒 发布于【2026年01月09日 21时】 | ❤️ 12 | 📝 79 词

阅读原文

👤 X 上的 Rohan Paul:“This paper shows a simple way to shorten LLM reasoning while keeping what decides the answer. Attention, meaning which earlier words the model looks at, predicted pruning scores with 0.88 correlation, a very strong match. An LLM writes by predicting the next words, so long https://t.co/GczN9kP6od”
博主未设置简介 影响力: 0.0万粉丝
AI INSIGHT
本文提出通过注意力机制评估推理词元重要性,以高相关性(0.88)精准修剪LLM推理过程,在保持答案决定因素的同时提升效率实验表明,该方法能保留关键计算步骤,优于依赖外部模型标注的修剪方法

🕒 发布于【2026年01月09日 21时】 | ❤️ 7 | 📝 211 词

阅读原文

👤 (5) X 上的 Rohan Paul:“This paper detects hallucinations in retrieval-based answers by turning the model’s hidden word influences into a graph. Instead of asking the LLM to self-criticize, this work reads its internal trace to find unsupported claims. The authors use layer-wise relevance propagation, https://t.co/0x59W5ocnz”
博主未设置简介 影响力: 0.0万粉丝
AI INSIGHT
本文通过将模型内部词语影响构建为语义推理图,检测检索增强生成中的幻觉,无需依赖模型自检,在RAGTruth数据集上F1值提升3%-6%

🕒 发布于【2026年01月09日 20时】 | ❤️ 11 | 📝 177 词

阅读原文

© 版权声明

相关文章

暂无评论

暂无评论...